
Web workers

Lecture 8

Problem: slow scripts

• If you’ve spent enough time with JavaScript or
browsing the Web you’ve probably seen the “slow
script” message.

• And, with all those multicore processors sitting in
your new machine how could a script be running too
slow?

• It's because JavaScript can only do one thing at a
time.

JavaScript is single-threaded

• Great thing: JavaScript is “single-threaded.”

• Why’s that great? Because it makes programming
straightforward.

• The downside:

 Cannot process large amount of data

 When doing heavy computation: UI becomes
unresponsive.

Most of Web apps work well

• JavaScript steps through
everything it has to do,
one after the other

• There’s no parallel
execution

Running an init function

Handling a user click

A timer just went off

Handling a submit

Process an array of data

Handling another user
click

Updating the DOM

 Fetching form data

Validating user input

Main thread queque

When single-threaded goes bad

• Everything works great until
a bit of JavaScript code
starts requiring a lot of
processing time

 Running an init function
 Handling a user click
 A timer just went off
 Handling a submit

Process an
array of data

 Handling another user click
 Updating the DOM
 Fetching form data
 Validating user input

Adding a helper thread: Web workers

• Before HTML5, we were stuck with one thread of
control in our pages and apps

• With Web Workers we’ve now got a way to create
another thread of control to help out.

• If you’ve got code that takes a long time to compute,
you can create a Web Worker that will handle that
task while the main JavaScript thread of control is
making sure everything is good with the browser and
the user.

How Web workers work
• The browser creates one or more workers:

Each worker is defined with its own JavaScript file that
contains all the code (or references to code) it needs to do its
job.
Workers live in a very restricted world; they don’t have access
to many of the runtime objects, like the DOM or any of the
variables or functions in your main thread.

• To get a worker to start working, the browser typically sends it a
message.

• The worker code receives the message, takes a look at it to see if
there are any special instructions, and starts working.

• When the worker completes its work, it then sends a message back,
with the final results of what it’s been working on.

• The main browser code then takes these results and incorporates
them into the page in some way.

Why workers live in a restricted world

• Why not allow workers to access the DOM?

• The reason the DOM and JavaScript have been so
successful is that DOM operations are highly
optimized, and only one thread can access to the
DOM.

• If we let multiple threads concurrently change the
DOM, then we’ll seriously impact its performance

• Allowing multiple changes to the DOM at the same
time can lead to situations where the DOM is in an
inconsistent state

Main use of web workers

• Processing large amounts of data in arrays or
large JSON responses from web services.

• Analyzing video.

• Processing complex image data for canvas.

Browser support

• Almost all modern browsers support Web Workers,
with one exception: Internet Explorer 9. For IE10 and
later, you can count on Web Workers

Checking for browser support:

if (! window["Worker"]) {

var status = document.getElementById("status");

status.innerHTML = "Bummer, no Web Workers";

}

Starting: markup

<!doctype html>
<html>
<head>

<title>Ping Pong</title>
<meta charset="utf-8">
<script src="manager.js"></script>

</head>
<body>

<p id="output"></p>
</body>

</html>

How to create new workers

var worker = new Worker("worker.js");

var worker1 = new Worker("worker.js");

var another_worker = new Worker("another_worker.js");

Manager.js:
sending message to workers

window.onload = function() {

var worker = new Worker("worker.js");

}

worker.postMessage("ping");

worker.postMessage([1, 2, 3, 5, 11]);

worker.postMessage({"message": "ping", "count": 5});

worker.postMessage(updateTheDOM);

Manager waits for a completed job
from a worker

worker.onmessage = function (event) {

var message = "Worker says " + event.data;

document.getElementById("output").innerHTML
= message;

};

Worker is waiting for messages from a
manager

• To get started on the worker, the first thing we need to
do is to make sure the worker can receive messages
that are sent from manager.js—that’s how the worker
gets its work orders.

• Every worker is ready to receive messages, you just
need to give the worker a handler to process them.

onmessage = pingPong;

function pingPong(event) {
if (event.data == "ping") {

postMessage("pong");
}

}

Explaining the code

• First, manager.js creates a new worker, assigns a message handler to it,
and then sends the worker a “ping” message.

• The worker, in turn, makes sure pingPong is set up as its message handler,
and then it waits.

• At some point, the worker receives a message from the manager, and
when it does it checks to see that it contains “ping”, which it does, and
then the worker does a lot of very little hard work and sends a “pong”
message back.

• At this point the main browser code receives a message from the worker,
which it hands to the message handler.

• The handler then simply prepends “Worker says ” to the front of the
message, and displays it.

link
manager.js
worker.js

http://csci.viu.ca/~barskym/teaching/WP2013/WEB_WORKERS/chapter10/pingpong.html
http://csci.viu.ca/~barskym/teaching/WP2013/WEB_WORKERS/chapter10/manager.js
http://csci.viu.ca/~barskym/teaching/WP2013/WEB_WORKERS/chapter10/worker.js

Quiz: what will happen 1

• manager.js
window.onload = function() {

var worker = new Worker("worker.js");
worker.onmessage = function(event) {

alert("Worker says " + event.data);
}
for (var i = 0; i < 5; i++) {

worker.postMessage("ping");
}

}

Quiz: what will happen 2

• manager.js
window.onload = function() {

var worker = new Worker("worker.js");
worker.ommessage = function(event) {
alert("Worker says " + event.data);
}
for(var i = 5; i > 0; i--) {

worker.postMessage("pong");
}

}

Quiz: what will happen 3

• manager.js
window.onload = function() {

var worker = new Worker("worker.js");
worker.onmessage = function(event) {

alert("Worker says " + event.data);
worker.postMessage("ping");

}

worker.postMessage("ping");
}

Quiz: what will happen 4

• manager.js

window.onload = function() {

var worker = new Worker("worker.js");

worker.onmessage = function(event) {

alert("Worker says " + event.data);

}

setInterval(pinger, 1000);

function pinger() {

worker.postMessage("ping");

}

}

Invoking worker without a message

<script>

var worker =

new Worker("quote.js");

worker.onmessage =
function(event) {

document.getElementById

("quote").innerHTML =

event.data;

};

</script>

• quote.js

var quotes = ["I hope …",

"There is a light…",

"Do you believe …"];

var index = Math.floor(

Math.random() *
quotes.length);

postMessage(quotes[index]);

Simultaneous exhibition: ping-pong
window.onload = function() {

var numWorkers = 3;

var workers = [];

for (var i = 0; i < XXX ; i++) {

var worker = new ("worker.js");

worker. XXX = function(event) {

alert(event.target + " says " + event.XXX);

};

workers.push(worker);

}

for (var i = 0; i < XXX; i++) {

workers[i]. ("ping");

}

}

Worker takes initiative

var quotes = ["I hope life …", "There is a light at the end…",
"Do you believe …"];

function postAQuote() {
var index = Math.floor(

Math.random() * quotes.length);
postMessage(quotes[index]);}

postAQuote();
setInterval(postAQuote, 3000);

Demo: link

http://csci.viu.ca/~barskym/teaching/WP2013/WEB_WORKERS/chapter10/quote.html

Importing computational scripts
into Web workers

• With importScripts you can import one or more
JavaScript files into your worker:

importScripts("http://bigscience.org/nuclear.js",

"http://nasa.gov/rocket.js",

"mylibs/atomsmasher.js");

if (taskType == "songdetection") {

importScripts("audio.js");

}

Using import scripts to make JSONP requests from web
workers?

Fractals

• The term fractal was coined by Benoit Mandelbrot in 1975 in his
book Fractals: Form, Chance, and Dimension.

• In 1979, while studying the Julia set, Mandelbrot discovered what is
now called the Mandelbrot set and inspired a generation of
mathematicians and computer programmers in the study of fractals
and fractal geometry.

• Like other mathematical ideas, fractals involve numbers and
equations.

• Fractals can be used to generate complex images: Swirling spirals,
endless self-similar repetitions receding into the distance,
geometric objects arranged in infinitely complex patterns, plant-like
creations, geologic designs, clouds, and more.

• These wondrous patterns defy logic yet owe their very existence to
mathematics and computers

Understanding fractals

http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://www.wikihow.com/Plot-the-Mandelbrot-Set-By-Hand

Mandelbrot set

• The Mandelbrot Set is one of the most well known fractals
• It is produced by the formula

zn+1 = zn
2 + c

where z and c are complex numbers, z0 = 0, and c is a point on
the plain.

• The formula is iterated until |zn| (the magnitude of z) is greater than or
equal to the bailout value 2.

• Then the pixel that c corresponds to is colored according to the number of
iterations that occurred before the process bailed out.

• The uninteresting black area of the image is the actual Mandelbrot Set. It
consists of all the values for c where |zn| never got larger than 2. Of
course this area is impossible to compute accurately, so this program
decides to colour black all pixels for which |zn| never gets larger than 2 for
a given number of iterations (256).

Single-threaded version: link

http://wickedlysmart.com/hfhtml5/chapter10/singlethread/fractal.html

Non-mathematical approach

• If you’re not a mathematician, the best way to think
about the Mandelbrot Set is as an infinitely complex
fractal image—meaning an image that you can zoom
into, to any level of magnification, because it can be
re-calculated based on the initial value

1. It’s generated by a very simple equation (the one
above) that can be expressed in just a few lines of
code

2. Generating the Mandelbrot Set takes a fair number
of computing cycles

Using web workers for procedural
image generation

• We can do it if we can break up the job into small tasks that
each worker can work on independently.

• The browser first creates a bunch of workers to help (but
not too many—workers can be expensive).

• Next, the browser code slices out a different part of the
image for each worker to compute

• As pre-computed pieces of the image come back from the
workers they are aggregated into the image in the browser,
and if there are more pieces to compute, new tasks are
handed out to the workers that are idle.

• With the last piece of the image computed, the image is
complete and the workers sit idle, until the user clicks to
zoom in, and then it all starts again...

Pseudocode

for (i = 0; i < numberOfRows; i++) {

var taskForRow = createTaskForRow(i);

var row = computeRow(taskForRow);

drawRow(row);

}

Is it really faster?

1. Consider an application that has a lot of “computing” going on in
the background that also has to be responsive to the user.

By adding workers to such an app you can immediately improve the feel
of the app for your users, because JavaScript has a chance to respond to
user interaction in between getting results from the workers, something it
doesn’t have a chance to do if everything’s being computed on the main
thread. Your app’s just going to feel faster (even if it isn’t running any
faster under the hood).

2. Almost all modern desktops and devices today are shipping with
multicore processors (and even multiple processors).

With just a single thread of control, JavaScript in the browser doesn’t
make use of your extra cores or your extra processors, they’re just
wasted. If you use Web Workers, the workers can take advantage of
running on your different cores and you’ll see a real speedup in your app

How many workers

• Web Workers aren’t intended to be used in large
numbers—while creating a worker looks simple in
code, it requires extra memory and an operating
system thread. So, in general you’ll want to create a
limited number of workers that you reuse over time.

• In theory you could assign a worker to compute every
single pixel, which would probably be much simpler
from a code design perspective, but given that workers
are heavy-weight resources, we’ll use 8 workers and
structure our computation to take advantage of them.

Preparing a task

• This function packages up all the data needed for the worker to
compute a row of pixels, into an object.

function createTask(row) {
var task = {

row: row,
width: rowData.width,
generation: generation,
r_min: r_min,
r_max: r_max,
i: i_max + (i_min - i_max) * row / canvas.height,
max_iter: max_iter,
escape: escape

};
return task;

}

Worker’s job – compute row
function computeRow(task) {

var iter = 0;
var c_i = task.i;
var max_iter = task.max_iter;
var escape = task.escape * task.escape;
task.values = [];
for (var i = 0; i < task.width; i++) {

var c_r = task.r_min + (task.r_max - task.r_min) * i / task.width;
var z_r = 0, z_i = 0;
for (iter = 0; z_r*z_r + z_i*z_i < escape && iter < max_iter; iter++) {
// z -> z^2 + c
…
}
…
task.values.push(iter);

}
return task;

}

Creating an array of workers and giving
them an initial task

var workers = [];
window.onload = init;
function init() {

setupGraphics();
for (var i = 0; i < numberOfWorkers; i++) {

var worker = new Worker("worker.js");
worker.onmessage = function(event) {
processWork(event.target, event.data);

}
worker.idle = true;
workers.push(worker);

}
startWorkers();

}

StartWorkers

var nextRow = 0;
var generation = 0;
function startWorkers() {

generation++;
nextRow = 0;
for (var i = 0; i < workers.length; i++) {

var worker = workers[i];
if (worker.idle) {

var task = createTask(nextRow);
worker.idle = false;
worker.postMessage(task);
nextRow++;

}
}

}

Implementing the worker

importScripts("workerlib.js");

onmessage = function (task) {

var workerResult = computeRow(task.data);

postMessage(workerResult);

}

Returning results in the same object

task = {

row: 1,

width: 1024,

generation: 1,

r_min: 2.074,

r_max: -3.074,

i: -0.252336,

max_iter: 1024,

escape: 1025

};

workerResult = {

row: 1,

width: 1024,

generation: 1,

r_min: 2.074,

r_max: -3.074,

i: -0.252336,

max_iter: 1024,

escape: 1025,

values: [3, 9, 56, ... -1, 22]

};

Reassigning a task to a worker
var worker = new Worker("worker.js");

worker.onmessage = function(event) {

processWork(event.target, event.data);

}

function processWork(worker, workerResults) {

drawRow(workerResults);

reassignWorker(worker);

}

function reassignWorker(worker) {

var row = nextRow++;

if (row >= canvas.height) {

worker.idle = true;

} else {

var task = createTask(row);

worker.idle = false;

worker.postMessage(task);

}

Result

link

mandel.js

http://csci.viu.ca/~barskym/teaching/WP2013/WEB_WORKERS/chapter10/Mandel/fractal.html
http://csci.viu.ca/~barskym/teaching/WP2013/WEB_WORKERS/chapter10/Mandel/mandel.js

Handling a click event

canvas.onclick = function(event) {
handleClick(event.clientX, event.clientY);

};

function handleClick(x, y) {
var width = r_max - r_min;
var height = i_min - i_max;
var click_r = r_min + width * x / canvas.width;
var click_i = i_max + height * y / canvas.height;
var zoom = 8;
r_min = click_r - width/zoom;
r_max = click_r + width/zoom;
i_max = click_i - height/zoom;
i_min = click_i + height/zoom;
startWorkers();

}

Handling onresize event

window.onresize = function() {
resizeToWindow();

};

function resizeToWindow() {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
var width = ((i_max - i_min) * canvas.width / canvas.height);
var r_mid = (r_max + r_min) / 2;
r_min = r_mid - width/2;
r_max = r_mid + width/2;
rowData = ctx.createImageData(canvas.width, 1);
startWorkers();

}

The final test

• Performance

• Single thread: link

• With web workers: link

http://wickedlysmart.com/hfhtml5/chapter10/singlethread/fractal.html
http://csci.viu.ca/~barskym/teaching/WP2013/WEB_WORKERS/chapter10/Mandel/fractal.html

Terminating a worker

• You’ve created workers to do a task, the task is
done, and you want to get rid of all the
workers (they do take up valuable memory in
the browser).

• You can terminate a worker from the code in
your main page like this:

worker.terminate();

Error handling

• What happens if something goes terribly wrong
in a worker? How can you debug it?

• Use the onerror handler to catch any errors and
also get debugging information, like this:

worker.onerror = function(error) {

document.getElementById("output").innerHTML =

"There was an error in " + error.filename +

" at line number " + error.lineno +

": " + error.message;

}

Using JSONP to make a server request

function makeServerRequest() {

importScripts("http://SomeServer.com?callback=
handleRequest");

}

function handleRequest(response) {

postMessage(response);

}

makeServerRequest();

Subworkers

• If your worker needs help with its task, it can
create its own workers. Say you’re giving your
worker regions of an image to work on, the
worker could decide that if a region is bigger
than some size, it will split it up among its own
subworkers:

var worker = new Worker("subworker.js");

Summary

• Without Web Workers, JavaScript is single-threaded,
meaning it can do only one thing at a time.

• ƒƒIf you give a JavaScript program too much to do, you
might get the slow script dialog.

• ƒƒWeb Workers handle tasks on a separate thread so
your main JavaScript code can continue to run and
your UI remains responsive.

More HTML5 and JavaScript: JQuery

window.onload = function() {
alert("the page is loaded!");

}

$(document).ready(function() {
alert("the page is loaded!");

});

$(function() {
alert("the page is loaded!");

});

$(function() {
$("#buynow").click(function()
{
alert("I want to buy now!");

});
});

$(function() {
$("a").click(function() {
alert("I want to buy now!");

});
});

More HTML5: Scalable Vector Graphics
SVG

• Including native graphics in your web
pages.

• Unlike canvas, SVG graphics are
specified with XML

• You create elements that represent
graphics, and then you combine
those elements together in complex
ways to make graphic scenes.

• SVG defines a variety of basic shapes,
you can also specify paths

• There are graphical editors that will
let you draw a scene and export it as
SVG

<div id="svg">

<svg xmlns

="http://www.w3.org/2000/svg">

<circle id="circle“ cx="50" cy="50"

r="20" stroke="#373737"

stroke-width="2" fill="#7d7d7d"

/>

</svg>

</div>

Great things about SVG:
You can scale your graphics as big or small as you want and they don’t pixelate
Because SVG is specified with text, SVG files can be searched, indexed, scripted and
compressed.

More HTML5

• Built-in native video and audio

• Offline web apps

• Cross-document messaging API

• …

